Soal-Soal Matematika/Himpunan
Himpunan semesta
suntingHimpunan semesta dilambangkan sebagai S.
Himpunan elemen
suntingHimpunan elemen dilambangkan sebagai ∈. contoh:
- S adalah bilangan asli yang kurang dari 10 serta A adalah bilangan asli ganjil yang kurang dari 10. maka bentuk himpunan elemen sebagai berikut:
S = {1, 2, 3, 4, 5, 6, 7, 8, 9} dan A = {1, 3, 5, 7, 9} maka S ∈ A.
Himpunan kosong
suntingHimpunan kosong dilambangkan sebagai {} atau ∅.
Himpunan bagian
suntingHimpunan bagian dilambangkan sebagai ⊂ (subset) dan ⊃ (superset). contoh:
- A = {11, 12, 13, 14, 15}, B = {11, 13} dan C = {16, 17} maka B ⊂ A, A ⊃ B serta C ⊄ A.
Himpunan irisan
suntingHimpunan irisan dilambangkan sebagai ∩. contoh:
- A = {11, 12, 13, 14, 15}, B = {11, 12, 15, 16, 17} maka A ∩ B = {11, 12, 15}.
Himpunan gabungan
suntingHimpunan irisan dilambangkan sebagai ∪. contoh:
- A = {11, 12, 13, 14, 15}, B = {11, 12, 15, 16, 17} maka A ∪ B = {11, 12, 13, 14, 15, 16, 17}.
- sifat
- A ∩ B = B ∩ A
- A ∪ B = B ∪ A
- (A ∩ B) ∩ C = A ∩ (B ∩ C)
- (A ∪ B) ∪ C = A ∪ (B ∪ C)
- A ∩ (B ∪ C) = (A ∩ C) ∪ (B ∩ C)
- A ∪ (B ∩ C) = (A ∪ C) ∩ (B ∪ C)
- (A’)’ = A
- A ∩ A’ = ∅
- A ∪ A’ = S
- A ∩ S = A
- A ∪ S = S
- A ∩ ∅ = ∅
- A ∪ ∅ = A
- (A ∩ B)’ = A’ ∪ B’
- (A ∪ B)’ = A’ ∩ B’
- Contoh
- Buatlah notasi matematika sebagai berikut:
- A adalah bilangan riil yang kurang dari 10.
- B adalah bilangan asli yang lebih dari 50.
- Jawaban
- A = {x|x<10, x ∈ R}
- B = {x|x>50, x ∈ N}
- Berapa banyak himpunan anggota beserta contohnya dari A = {a, b, c}?
- n(A) = 3
- Banyaknya himpunan anggota adalah 2n = 23 = 8
- Contohnya adalah A = {∅, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c}}
- S = {11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, A = {x|11 ≤ x ≤ 15, x ∈ N} dan B = {x|14 ≤ x ≤ 18, x ∈ N}. Tentukan:
- A’
- B’
- A ∩ B
- A ∪ B
- A’ ∩ B’
- A’ ∪ B’
- A’ ∩ B
- A’ ∪ B
- jawaban
- S = {11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, A = {11, 12, 13, 14, 15} dan B = {14, 15, 16, 17, 18}
- A’ = {16, 17, 18, 19, 20}
- B’ = {11, 12, 13, 19, 20}
- A ∩ B = {14, 15}
- A ∪ B = {11, 12, 13, 14, 15, 16, 17, 18}
- A’ ∩ B’ = {19, 20}
- A’ ∪ B’ = {11, 12, 13, 16, 17, 18, 19, 20}
- A’ ∩ B = {16, 17, 18}
- A’ ∪ B = {14, 15, 16, 17, 18, 19, 20}
- Keterangan
- (A ∩ B)’ = A’ ∪ B’
- (A ∪ B)’ = A’ ∩ B’
- (A ∩ B’)’ = A’ ∪ B
- (A ∪ B’)’ = A’ ∩ B