contoh
∗ s i n ( x − 30 ∘ ) = 1 s i n ( x − 30 ∘ ) = s i n 90 ∘ x − 30 ∘ = 90 ∘ x = 90 ∘ + 30 ∘ x = 120 ∘ ∗ ∗ x = 120 ∘ + k 360 ∘ k = 0 x = 120 ∘ ∗ ∗ x = ( 180 − 120 ) ∘ + k 360 ∘ x = 60 ∘ + k 6360 ∘ k = 0 x = 60 ∘ ∗ c o s x = 2 s i n 4 x c o s 4 x c o s x = s i n 8 x c o s x = c o s ( 90 ∘ − 8 x ) x = 90 ∘ − 8 x 9 x = 90 ∘ x = 10 ∘ ∗ ∗ x = 10 ∘ + k 360 ∘ k = 0 x = 10 ∘ ∗ ∗ x = − 10 ∘ + k 360 ∘ k = 0 x = 350 ∘ ∗ 3 t a n 2 ( x − 45 ∘ ) − 4 3 t a n ( x − 45 ∘ ) + 3 = 0 ( 3 t a n ( x − 45 ∘ ) − 3 ) ( t a n ( x − 45 ∘ ) − 3 ) = 0 t a n ( x − 45 ∘ ) = 3 3 atau t a n ( x − 45 ∘ ) = 3 ∗ ∗ t a n ( x − 45 ∘ ) = 3 3 t a n ( x − 45 ∘ ) = t a n 30 ∘ x − 45 ∘ = 30 ∘ x = 30 ∘ + 45 ∘ x = 75 ∘ ∗ ∗ ∗ x = 75 ∘ + k 180 ∘ k = 0 x = 75 ∘ k = 1 x = 255 ∘ ∗ ∗ t a n ( x − 45 ∘ ) = 3 t a n ( x − 45 ∘ ) = t a n 60 ∘ x − 45 ∘ = 60 ∘ x = 60 ∘ + 45 ∘ x = 105 ∘ ∗ ∗ ∗ x = 105 ∘ + k 180 ∘ k = 0 x = 105 ∘ k = 1 x = 285 ∘ {\displaystyle {\begin{aligned}*sin(x-30^{\circ })&=1\\sin(x-30^{\circ })&=sin90^{\circ }\\x-30^{\circ }&=90^{\circ }\\x&=90^{\circ }+30^{\circ }\\x&=120^{\circ }\\**x&=120^{\circ }+k360^{\circ }\\k&=0x=120^{\circ }\\**x&=(180-120)^{\circ }+k360^{\circ }\\x&=60^{\circ }+k6360^{\circ }\\k&=0x=60^{\circ }\\*cosx&=2sin4xcos4x\\cosx&=sin8x\\cosx&=cos(90^{\circ }-8x)\\x&=90^{\circ }-8x\\9x&=90^{\circ }\\x&=10^{\circ }\\**x&=10^{\circ }+k360^{\circ }\\k&=0x=10^{\circ }\\**x&=-10^{\circ }+k360^{\circ }\\k&=0x=350^{\circ }\\*3tan^{2}(x-45^{\circ })-4{\sqrt {3}}tan(x-45^{\circ })+3&=0\\(3tan(x-45^{\circ })-{\sqrt {3}})(tan(x-45^{\circ })-{\sqrt {3}})&=0\\tan(x-45^{\circ })&={\frac {\sqrt {3}}{3}}{\text{atau}}tan(x-45^{\circ })={\sqrt {3}}\\**tan(x-45^{\circ })&={\frac {\sqrt {3}}{3}}\\tan(x-45^{\circ })&=tan30^{\circ }\\x-45^{\circ }&=30^{\circ }\\x&=30^{\circ }+45^{\circ }\\x&=75^{\circ }\\***x&=75^{\circ }+k180^{\circ }\\k&=0x=75^{\circ }\\k&=1x=255^{\circ }\\**tan(x-45^{\circ })&={\sqrt {3}}\\tan(x-45^{\circ })&=tan60^{\circ }\\x-45^{\circ }&=60^{\circ }\\x&=60^{\circ }+45^{\circ }\\x&=105^{\circ }\\***x&=105^{\circ }+k180^{\circ }\\k&=0x=105^{\circ }\\k&=1x=285^{\circ }\\\end{aligned}}}