Kalkulus/Pengenalan Limit

Dilihat secara intuitif

sunting

Limit adalah subjek matematika yang mempelajari apa yang terjadi pada suatu fungsi ketika inputnya dimasukkan mendekati suatu angka. Notasi umum untuk limit adalah:

 

Ini dibaca sebagai "Limit dari   ketika   mendekati  . Nanti kita akan membahas kapan kita dapat menentukan apakah suatu limit ada untuk setiap   pada   atau tidak, dan apa artinya jika limit tersebut ada. Sekarang, kita akan melihat dari sudut pandang intuitif terlebih dahulu.

Katakan jika ada sebuah fungsi  , dan kita akan memasukkan pada limitnya ketika   mendekati  . Dengan menggunakan notasi diatas, kita dapat menuliskan limitnya sebagai:

 

Cara yang dipakai untuk mendapatkan berapa nilai limit adalah dengan mencoba masukkan angka yang mendekati 2, hitunglah nilai masing-masing pada fungsi  , dan lihat apa yang terjadi ketika x mendekati 2. Dapat dilihat di tabel di bawah ini:

  1,7 1,8 1,9 1,95 1,99 1,999
  2,89 3,24 3,61 3,8025 3,9601 3,996001

Sekarang kita coba masukkan untuk angka yang mendekati 2 dari atas:

  2,3 2,2 2,1 2,05 2,01 2,001
  5,29 4,84 4,41 4,2025 4,0401 4,004001

Dari hasil tabel diatas, dapat kita lihat bahwa jika nilai   semakin mendekati angka 2, maka nilai   akan semakin mendekati 4, baik dari atas maupun dari bawah. Untuk alasan ini, maka kita dapat memastikan bahwa limit   ketika   mendekati 2 adalah 4, atau jika ditulis dalam notasi limit,

 

Sekarang mari kita lihat contoh lainnya. Kita akan melihat karakter dari fungsi   ketika nilai   dimasukkan mendekati 2. Limitnya adalah:

 

Seperti sebelumnya, kita dapat memasukkan nilai-nilai   yang mendekati 2 dari bawah maupun dari atas. Berikut ini tabel untuk nilai   mendekati 2 dari bawah:

  1,7 1,8 1,9 1,95 1,99 1,999
  -3,333 -5 -10 -20 -100 -1000

Dan tabel ini untuk   mendekati 2 dari atas:

  2,3 2,2 2,1 2,05 2,01 2,001
  3,333 5 10 20 100 1000

Pada kasus ini, terlihat bahwa fungsi tidak memiliki satu nilai untuk   mendekati 2, tapi malah salig berjauhan satu sama lain. Limit ini disebut dengan limit tak terhingga. Perhatikan bahwa kita tidak dapat memasukkan angka 2 dalam fungsi   karena berarti akan membaginya dengan nol.